
An in-depth look at Kippo: an
integration perspective

Kamil Ko ltyś
Network and Information Security Methods Team

Copyright c© 2013 NASK

Contents

1 Introduction 2

2 Installation 2

3 Configuration 3
3.1 Main configuration file . 3
3.2 Options for twistd . 6
3.3 File with emulated filesystem 6
3.4 File contents . 6
3.5 Executable file messages . 6
3.6 Additional configuration data 7

4 Start up and reconfiguration 7

5 Output characteristics 8

6 Output format 10
6.1 Main log . 10
6.2 MySQL database . 17
6.3 XMPP server . 21

1

1 Introduction

Kippo is a honeypot that emulates the SSH service. The emulation involves
SSH session establishment and, in the case of user’s successful authorization,
also shell interaction with the user. The honeypot can be used to register
brute force attacks aimed at obtaining users SSH service passwords. More-
over, it allows for analyzing further actions of the attacker who manages to
obtain the password and thus has access to the emulated system. This is
possible because Kippo registers all shell commands inputted by the user
and saves in selected directory all files downloaded by means of emulated
wget command.

Kippo emulates SSH service so a degree that may give an attacker the
impression of using real SSH service. Thus, data gathered by the honeypot
may provide many valuable information about the purpose and the way of
performing such type of attacks. These data may be useful for many different
IT security systems. The aim of this article is to present the Kippo honeypot
from the perspective of integration with other threat detection systems, which
may benefit from Kippo’s functionality.

The first sections of this document present issues involved with installa-
tion, configuration, start up and reconfiguration of the honeypot. Afterward,
the data gathered by Kippo are characterized and the details about data for-
mat are provided.

2 Installation

To install Kippo, the following items from SVN repository http://kippo.

googlecode.com/svn/trunk/ have to be copied to the directory selected as
working directory for Kippo:

• kippo - directory with Kippo source files (python);

• kippo.tac - configuration file for twistd (twistd is required to run Kippo);

• start.sh - shell script for starting Kippo;

2

http://kippo.googlecode.com/svn/trunk/
http://kippo.googlecode.com/svn/trunk/

3 Configuration

3.1 Main configuration file

The main configuration file is a text file with INI-like structure 1. This
format is supported by e.g. ConfigParser python module. An example of
the main configuration file can be found in the Kippo project repository:
http://kippo.googlecode.com/svn/trunk/kippo.cfg.dist.

Kippo assumes that the main configuration file resides in Kippo’s working
directory and its name is kippo.cfg. Changing default path to the configura-
tion file is not possible without altering the Kippo sources.

The main configuration file has three sections:

• [honeypot] - mandatory section including core honeypot configuration;

• [database mysql] - optional section including configuration of the MySQL
logging module;

• [database xmpp] - optional section including configuration of the XMPP
logging module;

All parameters of these sections are discussed below.

Section [honeypot]

The following parameters can be defined in the [honeypot] section:

• ssh addr - IP address on which Kippo listens for new connections (de-
fault is 0.0.0.0 that means any address IP);

• ssh port - TCP port on which Kippo listens for new connections (default
is 2222);

• hostname - hostname displayed by shell prompt;

• log path - directory for saving log files (default is log ; this directory
must have subdirectory tty, in which files with SSH session history are
saved; when a directory other than default one is used, the option -l
specified for twistd in script start.sh should be appropriately changed
- see 3.2);

• download path - directory for saving files downloaded by the emulated
wget command;

1A hash (#) is used to start single line comment instead of a semicolon (;).

3

http://kippo.googlecode.com/svn/trunk/kippo.cfg.dist

• download limit size - maximum size of downloaded file (default is 0 that
means no limit; if maximum size greater than 0 is specified, files larger
than this maximum size will not be saved on disk);

• filesystem file - path to the file containing emulated filesystem (see 3.3);

• contents path - directory with files contents displayed by emulated cat
command (see 3.4);

• txtcmds path - directory with messages generated by executable files
(see 3.5);

• data path - directory including files with additional configuration data
(see 3.6);

• public key - path to the file with public key used to authenticate emu-
lated SSH server;

• private key - path to the file with private key used to authenticate em-
ulated SSH server;

• out addr - IP address used by emulated wget for opening outgoing con-
nections (optional parameter);

• sensor name - name identifying the instance of Kippo in MySQL database
(optional parameter, if it is not specified, the IP address is used to iden-
tify the Kippo instance);

• fake addr - fake IP address displayed as a source IP address of SSH
connection by emulated w command (optional parameter, if it is not
specified, the emulated w displays actual IP address);

• banner file - file including message that is displayed before the first
prompt for password (optional parameter);

• interact enabled - flag (true or false) indicating if interactive access to
Kippo using telnet is enabled (by default is disabled);

• interact port - port, on which Kippo handles telnet communication;

4

Section [database mysql]

The following parameters can be defined in the [database mysql] section:

• host - name of the server running database;

• database - database name;

• username - name of the database user;

• password - password of the database user;

• port - port on which the database listens for new connections;

Section [database xmpp]

The following parameters can be defined in the [database xmpp] section:

• server - name of the XMPP server;

• user - name of the XMPP user;

• password - password of the XMPP user;

• muc - name of the MUC service;

• signal createsession - name of the MUC room to which messages about
creating new TCP connection/SSH session are sent;

• signal connectionlost - name of the MUC room to which messages about
termination of TCP connection/SSH session are sent;

• signal loginfailed - name of the MUC room to which messages about
failed authentication attempt are sent;

• signal loginsucceeded - name of the MUC room to which messages about
successful authentication attempt are sent;

• signal command - name of MUC room to which messages about execut-
ing shell command are sent;

• signal clientversion - name of MUC room to which messages about SSH
client version are sent;

• debug - flag (true or false) indicating if additional information concern-
ing communication with XMPP server has to be logged in the main log
file;

5

3.2 Options for twistd

The following options for twistd can be set in the start.sh shell script:

• option -l: path to the file in which Kippo log entries are recorded
(default is log/kippo.log);

• option --pidfile: path to the file in which PID of process executing
Kippo is recorded (default is kippo.pid);

3.3 File with emulated filesystem

Kippo requires a file (in python pickle format) that contains the structure
of emulated filesystem. In the Kippo project repository there is an example
file with filesystem resembling Debian 5.0 (http://kippo.googlecode.com/
svn/trunk/fs.pickle). However, using tool createfs.py from the Kippo
repository (http://kippo.googlecode.com/svn/trunk/createfs.py) it is
possible to generate a fake filesystem (in python pickle format required by
Kippo) which structure is based on the host filesystem.

3.4 File contents

File with emulated filesystem contains only the structure of the emulated
filesystem and does not include the files contents. Thus, emulated command
cat by default displays message No such file or directory for each file, even
if this file exists in the structure of emulated filesystem (it is displayed by
emulated command ls).

However, for each file in the emulated filesystem it is possible to define
its content that will be displayed by emulated cat. Let’s consider the file
file name located on the emulated filesystem in directory file dir. In order to
define the content of this file, a file file name with relevant content has to
be created on the host filesystem in the directory contents path/file dir (see
contents path parameter description in 3.1).

In the Kippo project repository a directory http://kippo.googlecode.

com/svn/trunk/honeyfs comprises example content for selected files of De-
bian 5.0 system.

3.5 Executable file messages

In the system emulated by Kippo an attempt to run any executable file by
default causes showing an error message command not found.

6

http://kippo.googlecode.com/svn/trunk/fs.pickle
http://kippo.googlecode.com/svn/trunk/fs.pickle
http://kippo.googlecode.com/svn/trunk/createfs.py
http://kippo.googlecode.com/svn/trunk/honeyfs
http://kippo.googlecode.com/svn/trunk/honeyfs

However, for each executable file in the emulated filesystem it is possible
to define the message that will be displayed as a result of its execution. To do
so, for given executable file file name located on the emulated filesystem in di-
rectory file dir, the file containing relevant message and having name file name
has to be created on the host filesystem in the directory txtcmds path/file dir
(see txtcmds path parameter description in 3.1).

In the Kippo project repository a directory http://kippo.googlecode.

com/svn/trunk/txtcmds comprises example messages for selected executable
files of Debian 5.0 system.

3.6 Additional configuration data

Additional configuration data are included in two text files located in direc-
tory specified in the main configuration file by the parameter data path:

• userdb.txt - text file containing in each row a trio login:uid:password; file
userdb.txt is used for:

– user authentication: authentication relies on checking whether for
given login and password there exists a trio in file userdb.txt con-
taining this login and password; file userdb.txt is automatically
modified by the emulated passwd command that causes append-
ing a trio cur user:cur uid:new pass where cur user is a name of the
user that executes the command, cur uid is the uid of this user
and new pass is the new password;

– diplaying uid by emulated id command: id displays uid from the
first trio in which the login of user invoking the command is spec-
ified;

in the Kippo project repository there is an example of the file userdb.txt :
http://kippo.googlecode.com/svn/trunk/data/userdb.txt

• last.log - text file containing information about last logins to the system
emulated by Kippo; after the termination of authenticated SSH session
Kippo appends to the file last.log information about terminated session
(registered user name is always root even if actual name of user that
was logged in is different);

4 Start up and reconfiguration

To start up Kippo the script start.sh has to be executed.

7

http://kippo.googlecode.com/svn/trunk/txtcmds
http://kippo.googlecode.com/svn/trunk/txtcmds
http://kippo.googlecode.com/svn/trunk/data/userdb.txt

To reconfigure the honeypot selected configuration elements mentioned
in subsections 3.1-3.6 have to be appropriately altered. Changes made in
the main configuration file, in the script start.sh and/or in the file with
emulated filesystem (i.e. changes concerning configuration elements discussed
in subsections 3.1-3.3) require honeypot restart. In turn, changes involving
files contents, executable files messages or additional configuration data (i.e.
changes concerning configuration elements discussed in subsections 3.4-3.6)
are immediately taken into account by running Kippo instance.

5 Output characteristics

Kippo gathers and stores data about different kind of events occurring during
TCP connections/SSH sessions. All those data are registered in the text file
serving as a main log of honeypot. Additionally the history of each SSH
session is recorded in separate binary file. Optionally a part of data gathered
by Kippo can be stored in MySQL database and/or communicated to XMPP
server. However, it should be noted that in the MySQL database or in the
XMPP server not all output data can be found that are available in the main
log. For each TCP connection/SSH session following data can be found in
main log (L), database (B) and XMPP server (X) about different events:

• establishment of TCP connection:

– source IP address: L, B, X;

– source TCP port: L, X;

– target IP address: L, X;

– target TCP port: L, X;

– time of establishment of TCP connection: L, B;

• termination of TCP connection/SSH session:

– reason of termination of TCP connection/SSH session: L;

– time of termination of TCP connection/SSH session: L, B*, X*;

– in the case of termination of SSH session:

∗ content of the file with SSH session history: B*;

• receiving of information about SSH client version:

– client version: L, B*, X*;

8

– time of receiving of information about client version: L;

• establishment of encrypted connection:

– encryption algorithm: L;

– time of establishment of encrypted connection: L;

• client’s authentication attempt:

– login: L, B, X;

– password: L, B, X;

– information if attempt was successful: L, B, X;

– time of performing the client’s authentication attempt: L, B;

– in the case of successful authentication (i.e. creating SSH session):

∗ size of terminal: L, B;

∗ name of created file to record SSH session history: L;

∗ values of environment variables (e.g. XMODIFIERS, LANG):
L;

• executing shell command:

– command name: L, B, X;

– information if command was recognized by Kippo: L, B, X;

– time of command execution: L, B;

– in the case of wget command:

∗ URL of downloaded file: L, B;

∗ name of the file where downloaded file was saved on the host
machine: L, B;

∗ time of starting the file download: L, B;

∗ time of finishing the file download: L;

• inputting data for shell command (e.g. passwd):

– command name: L, B;

– input data: L, B;

– time of data input: L, B;

At the time of writing the newest Kippo revision (234) fails to communi-
cate some output to MySQL database (B*) and XMPP server (X*) although
the earlier revision (228 2) does it well.

2Revision 228, in turn, does not store information about downloaded files in the MySQL
database

9

6 Output format

6.1 Main log

Kippo records all gathered data about current events in the text file kippo.log
created by default in subdirectory log of Kippo’s working directory. Name
and location of this file can be changed in the script start.sh (see 3.2). When
the size of kippo.log exceeds 1MB, its contents is moved to the file kippo.log.1,
old content of the kippo.log.1 (if it exists) is moved to the kippo.log.2, old
content of the kippo.log.2 (if it exists) is moved to the kippo.log.3 and so on.
Thus, Kippo main log consists of one text file, in which data about current
events are recorded and zero or more text files with data about previous
events.

Each entry of the main log consists of three consecutive parts separated
by single spaces:

• timestamp - log entry creation time;

• context - log entry context;

• message - log entry message (may consists of multiple lines);

The log entry creation time is the local time reported by the operating
system. The creation time is recorded in the following format: YYYY-MM-
DD HH:mm:ssTZD. The format of log entry’s context and message depends
on the event type and is discussed in more detail below.

Establishment of TCP connection

Establishment of TCP connection is registered in the main log as a one entry
with following context and message:

• context := [kippo.core.honeypot.HoneyPotSSHFactory];

• message := New connection: IP source:port source (IP dest:port dest)
[session: session id], where:

– IP source: source IP address;

– port source: source TCP port;

– IP dest: target IP address;

– port dest: target TCP port;

– session id : number uniquely identifying TCP connection/SSH ses-
sion in the main log (session identifier);

10

Example log entry informing about the establishment of TCP connection:

2013−01−08 14:18:25+0100 [kippo.core.honeypot.HoneyPotSSHFactory]
New connection: 192.168.122.1:35533 (192.168.122.82:2222) [session: 0]

Termination of TCP connection/SSH session

Termination of TCP connection/SSH session is registered in main log as one
or two entries with following context:

• context := [HoneyPotTransport,session id,IP source], where:

– session id : identifier of the terminated session ;

– IP source: source IP address of the terminated session;

Entry informing about the event of the termination of TCP connec-
tion/SSH session has the following message:

• message := connection lost;

Before above mentioned entry there may be an entry informing about the
reason of termination of TCP connection/SSH session. The message of this
entry depends on the kind of the reason and may be one of the following:

• message := Disconnecting with error, code 2
reason: bad packet length length value

• message := Got remote error, code 11
reason: disconnected by user

Both above messages occupy two lines. The former one denotes the connec-
tion termination due to receiving packet with bad length length value. The
later one informs that the connection has been terminated by the client.

Example log entries informing about the termination of TCP connec-
tion/SSH session:

2013−01−08 15:03:22+0100 [HoneyPotTransport,0,192.168.122.1] Got
remote error, code 11

reason: disconnected by user
2013−01−08 15:03:22+0100 [HoneyPotTransport,0,192.168.122.1]

connection lost

11

Receiving of information about SSH client version

Receiving of information about SSH client version is registered in the main
log as a one entry with following context and message:

• context := [HoneyPotTransport,session id,IP source], where:

– session id: identifier of the session involved with received informa-
tion about SSH client version;

– IP source: source IP address of the session involved with received
information about SSH client version;

• message := Remote SSH version: version string , where:

– version string : string describing SSH client version;

Example log entry informing about SSH client version:

2013−01−08 14:18:26+0100 [HoneyPotTransport,0,192.168.122.1] Remote
SSH version: SSH−2.0−OpenSSH 5.3

Establishment of encrypted connection

Establishment of encrypted connection is registered in the main log as five
entries with following context:

• context := [HoneyPotTransport,session id,IP source], where:

– session id : identifier of the session for which the encrypted con-
nection has been established;

– IP source: source IP address of the session for which the encrypted
connection has been established;

Among these five log entries, two of them with following messages are
significant:

• message := incoming: cipher spec , where:

– cipher spec : encryption algorithm;

• message := starting service ssh-userauth;

12

The first message informs about the algorithm used for encrypting the con-
nection. The second one states the fact of establishment of encrypted con-
nection.

Example log entries informing about the establishment of encrypted con-
nection:

2013−01−08 14:18:26+0100 [HoneyPotTransport,0,192.168.122.1] kex alg,
key alg: diffie−hellman−group1−sha1 ssh−rsa

2013−01−08 14:18:26+0100 [HoneyPotTransport,0,192.168.122.1] outgoing:
aes128−ctr hmac−md5 none

2013−01−08 14:18:26+0100 [HoneyPotTransport,0,192.168.122.1] incoming
: aes128−ctr hmac−md5 none

2013−01−08 14:18:26+0100 [HoneyPotTransport,0,192.168.122.1] NEW
KEYS

2013−01−08 14:18:26+0100 [HoneyPotTransport,0,192.168.122.1] starting
service ssh−userauth

Client’s authentication attempt

Client’s authentication attempt is registered in the main log as several entries
with following context:

• context := [SSHService ssh-userauth on HoneyPotTransport,session id,IP source],
where:

– session id : identifier of the session for which the authentication is
performed;

– IP source: source IP address of the session for which the authen-
tication is performed;

Among these several log entries, the one with following messages is sig-
nificant:

• message := login attempt [username/password] result, where:

– username: name of the user;

– password: password of the user;

– result: result of the client’s authentication attempt (succeeded or
failed);

In the case of successful authentication attempt (result = succeeded) in
the main log there are registered subsequent entries with following context:

13

• context := [SSHChannel session (0) on SSHService ssh-connection on Hon-
eyPotTransport,session id,IP source], where:

– session id : identifier of the session for which the authentication
was successful;

– IP source: source IP address of the session for which the authen-
tication was successful;

These log entries inform about the size of terminal, the name of created
file to store SSH session history and the values of some environment variables,
respectively. Their messages are as follows:

• message := Terminal size: row num col num, where:

– row num: number of rows;

– col num: number of columns;

• message := Opening TTY log: file name, where:

– file name: name of created file to store SSH session history;

• message := request env: ’\x00\x00\x00\nXMODIFIERS\x00\x00\x00\x08var value’,
where:

– var value: value of XMODIFIERS variable ;

• message := request env: ’\x00\x00\x00\x04LANG\x00\x00\x00\nvar value’,
where:

– var value: value of LANG variable;

Example log entries informing about client’s authentication attempt:

2013−01−08 14:33:27+0100 [SSHService ssh−userauth on
HoneyPotTransport,0,192.168.122.1] login attempt [root/123456]
succeeded

2013−01−08 14:33:27+0100 [SSHService ssh−userauth on
HoneyPotTransport,0,192.168.122.1] root authenticated with keyboard
−interactive

2013−01−08 14:33:27+0100 [SSHService ssh−userauth on
HoneyPotTransport,0,192.168.122.1] starting service ssh−connection

2013−01−08 14:33:27+0100 [SSHService ssh−connection on
HoneyPotTransport,0,192.168.122.1] got channel session request

2013−01−08 14:33:27+0100 [SSHChannel session (0) on SSHService ssh−
connection on HoneyPotTransport,0,192.168.122.1] channel open

14

2013−01−08 14:33:27+0100 [SSHService ssh−connection on
HoneyPotTransport,0,192.168.122.1] got global no−more−
sessions@openssh.com request

2013−01−08 14:33:27+0100 [SSHChannel session (0) on SSHService ssh−
connection on HoneyPotTransport,0,192.168.122.1] pty request: xterm
(33, 129, 0, 0)

2013−01−08 14:33:27+0100 [SSHChannel session (0) on SSHService ssh−
connection on HoneyPotTransport,0,192.168.122.1] Terminal size: 33
129

2013−01−08 14:33:27+0100 [SSHChannel session (0) on SSHService ssh−
connection on HoneyPotTransport,0,192.168.122.1] request env: ’\x00\
x00\x00\nXMODIFIERS\x00\x00\x00\x08@im=none’

2013−01−08 14:33:27+0100 [SSHChannel session (0) on SSHService ssh−
connection on HoneyPotTransport,0,192.168.122.1] request env: ’\x00\
x00\x00\x04LANG\x00\x00\x00\npl PL.utf8’

2013−01−08 14:33:27+0100 [SSHChannel session (0) on SSHService ssh−
connection on HoneyPotTransport,0,192.168.122.1] getting shell

2013−01−08 14:33:27+0100 [SSHChannel session (0) on SSHService ssh−
connection on HoneyPotTransport,0,192.168.122.1] Opening TTY log:
/var/log/kippo/log/tty/20130108−143327−9152.log

2013−01−08 14:33:33+0100 [SSHChannel session (0) on SSHService ssh−
connection on HoneyPotTransport,0,192.168.122.1] /etc/motd resolved
into /etc/motd

Executing shell command

Executing shell command is registered in the main log as two entries with
following context:

• context := [SSHChannel session (0) on SSHService ssh-connection on Hon-
eyPotTransport,session id,IP source], where:

– session id : identifier of the session within the shell command is
executed;

– IP source: source IP address of the session within the shell com-
mand is executed;

From these two entries the second one with following message is signifi-
cant:

• message := cmd found : cmd name, where:

15

– cmd found : information if command was recognized by Kippo
(Command found means yes and Command not found means no);

– cmd name: name of the shell command;

In the case of wget command the subsequent log entries inform about the
URL of downloaded file, the name of the file where downloaded file is saved
on the host machine and the time of starting and finishing the file download.
These log entries have following context:

• context := [HTTPPageDownloader,client];

They contain the following messages:

• message := Updating realfile to file name, where:

– file name: name of the file where downloaded file is saved on the
host machine;

• message := Stopping factory <HTTPProgressDownloader: url>, where:

– url : URL of downloaded file;

Example log entries informing about executing shell command:

2013−01−08 14:51:47+0100 [SSHChannel session (0) on SSHService ssh−
connection on HoneyPotTransport,0,192.168.122.1] CMD: wget www.
dna.caltech.edu/Papers/DNAorigami−nature.pdf

2013−01−08 14:51:47+0100 [SSHChannel session (0) on SSHService ssh−
connection on HoneyPotTransport,0,192.168.122.1] Command found:
wget www.dna.caltech.edu/Papers/DNAorigami−nature.pdf

2013−01−08 14:51:47+0100 [SSHChannel session (0) on SSHService ssh−
connection on HoneyPotTransport,0,192.168.122.1] Starting factory <
HTTPProgressDownloader: http://www.dna.caltech.edu/Papers/
DNAorigami−nature.pdf>

2013−01−08 14:51:50+0100 [HTTPPageDownloader,client] Updating
realfile to /var/log/kippo/dl/20130108145147
http www dna caltech edu Papers DNAorigami nature pdf

2013−01−08 14:51:50+0100 [HTTPPageDownloader,client] Stopping
factory <HTTPProgressDownloader: http://www.dna.caltech.edu/
Papers/DNAorigami−nature.pdf>

16

Inputting data for shell command

Inputting data for shell command is registered in the main log as a one entry
with following context and message:

• context := [SSHChannel session (0) on SSHService ssh-connection on
HoneyPotTransport,session id ,IP source], where:

– session id : identifier of the session within the shell command is
executed;

– IP source: source IP address of the session within the shell com-
mand is executed;

• message := INPUT (cmd): input value, where:

– cmd : name of the shell command;

– value: input data;

Example log entry informing about inputting data for shell command:

2013−01−08 14:51:47+0100 [SSHChannel session (0) on SSHService ssh−
connection on HoneyPotTransport,0,192.168.122.1] INPUT (passwd):
pp

6.2 MySQL database

Kippo enables storing a part of gathered data in the relational MySQL
database. Fig. 1 presents Kippo’s database diagram.

Seven tables are defined in Kippo’s database:

• clients - table containing information about SSH client versions; this
table has the following columns:

– id: unique identifier;

– version: SSH client version;

• sensors - table containing information about Kippo instances; this table
has the following columns:

– id: unique identifier;

– ip: name identifying Kippo instance specified in the main config-
uration file (parameter sensor name);

17

• sessions - table containing information about TCP connections/SSH
sessions; this table has the following columns:

– id: unique identifier;

– starttime: time of the establishment of TCP connection/SSH ses-
sion;

– endtime: time of the termination of TCP connection/SSH session;

– sensor: unique identifier of the Kippo instance handling TCP con-
nection/SSH session;

– ip: source IP address;

– termsize: size of terminal;

– client: unique identifier of the SSH client version;

• auth - table containing information about clients’ authentication at-
tempts; this table has the following columns:

– id: unique identifier;

– session: unique identifier of the session;

– success: information if client’s authentication attempt was suc-
cessful (1) or failed (0);

– username: name of the user;

– password: password of the user;

– timestamp: time of performing client’s authentication attempt;

• input - table containing information about executed shell commands
and data inputted for shell commands; this table has the following
columns:

– id: unique identifier;

– session: unique identifier of the session;

– timestamp: time of executing shell command/inputting data for
shell command;

– realm: NULL (in the case of shell command execution) or com-
mand name (in the case of inputting data for shell command);

– success: NULL (in the case of inputting data for shell command)
or information if command was recognized (1) or not recognized
(0) by Kippo (in the case of executing shell command);

18

– input: name of command/input data;

• downloads - table containing information about downloaded files; this
table has the following columns:

– id: unique identifier;

– session: unique identifier of the session;

– timestamp: time of starting the file download;

– url: URL of the downloaded file;

– outfile: name of the file where downloaded file was saved on the
host machine;

• ttylog - table containing files with SSH sessions’ histories; this table has
the following columns:

– id: unique identifier;

– session: unique identifier of the session;

– ttylog: content of the file with SSH session history;

The time registered in database is UTC. Database operations involved
with events registered for TCP connections/SSH sessions are discussed below.

Establishment of TCP connection

When there is no information in database about the Kippo instance with
which the TCP connection is established, the name of this Kippo instance is
inserted into table sensors:

insert into sensors (id, ip) values (’3’, ’kippo hp’);

Information about newly established connection is inserted into table ses-
sions:

insert into sessions (id, starttime, endtime, sensor, ip, termsize, client)
values (’e28678b4599511e2bab10800277e980c’, ’2013−01−08 13:18:26’,

NULL, ’3’, ’192.168.122.1’, NULL, NULL);

Termination of TCP connection/SSH session

Information about the time of termination of TCP connection/SSH session
is added to the session data comprised in appropriate row of table sessions:

19

update sessions set endtime = ’2013−01−08 14:03:22’ where id = ’
e28678b4599511e2bab10800277e980c’;

In the case of the termination of SSH session, the content of the file with
SSH session history is inserted into table ttylog:

insert into ttylog (id, session, ttylog) values (’4’, ’
e28678b4599511e2bab10800277e980c’, BLOB);

Receiving information about SSH client version

When there is no information in database about the received SSH client
version it is inserted into table clients:

insert into clients (id, version) values (’2’, ’SSH−2.0−OpenSSH 5.3’);

Information about SSH client version is associated with the session de-
scribed by appropriate row of table sessions:

update sessions set client = 3 where id = ’
e28678b4599511e2bab10800277e980c’;

Client’s authentication attempt

Information about client’s authentication attempt is inserted into table auth:

insert into auth (id, session, success, username, password, timestamp)
values (’12’, ’e28678b4599511e2bab10800277e980c’, ’1’, ’root’, ’123456’,

’2013−01−08 13:33:27’);

In the case of successful client’s authentication attempt information about
the size of terminal is added to the session data comprised in appropriate row
of table sessions:

update sessions set termsize = ’129x33’ where id = ’
e28678b4599511e2bab10800277e980c’;

Executing shell command

Information about executing shell command is inserted into table input:

insert into input (id, session, timestamp, realm, success, input)
values (’27’, ’e28678b4599511e2bab10800277e980c’, ’2013−01−08 13:42:03’,

NULL, ’1’, ’pwd’)

20

In the case of wget command information about downloaded file is in-
serted into table downloads:

insert downloads (id, session, timestamp, url, outfile)
values (’1’, ’e28678b4599511e2bab10800277e980c’, ’2013−01−08 13:42:03’, ’

http://cachefly.cachefly.net/100mb.test’, ’/var/log/kippo/dl
/20130131032708 http cachefly cachefly net 100mb test’);

Inputting data for shell command

Information about inputting data for shell command is inserted into table
input:

insert into input (id, session, timestamp, realm, success, input)
values (’27’, ’e28678b4599511e2bab10800277e980c’, ’2013−01−08 13:42:03’,

’passwd’, NULL, ’pp’);

6.3 XMPP server

Kippo enables the sending of part of gathered data to the XMPP server. It
uses six kinds of XMPP messages informing about different events:

• establishment of TCP connection;

• termination of TCP connection/SSH session;

• receiving SSH client version;

• failed client’s authentication attempt;

• successful client’s authentication attempt;

• executing shell command;

With each kind of XMPP message there may be associated separate MUC
room, to which these messages will be sent according to XMPP protocol.

Example XMPP messages are included below.

Message informing about the establishment of TCP connection

21

<message from=”kippo−events−createsession@conference.localhost/kippo
−XDJQcVxo” type=”groupchat” to=”kkoltys@localhost/localhost”>

<body>
<kippo xmlns=”http://code.google.com/p/kippo/” type=”createsession”>
<session local host=”127.0.0.1” session=”136371692

cdb4d91b3eec6ff04618232” local port=”2222” remote port=”35533”
remote host=”192.168.122.1”/>

</kippo>
</body>
</message>

Message informing about the termination of TCP connection/SSH
session

<message from=”kippo−events−connectionlost@conference.localhost/
kippo−XDJQcVxo” type=”groupchat” to=”kkoltys@localhost/
localhost”>

<body>
<kippo xmlns=”http://code.google.com/p/kippo/” type=”connectionlost

”>
<session session=”136371692cdb4d91b3eec6ff04618232”/>
</kippo>
</body>
</message>

Message informing about receiving SSH client version

<message from=”kippo−events−clientversion@conference.localhost/kippo
−XDJQcVxo” type=”groupchat” to=”kkoltys@localhost/localhost”>

<body>
<kippo xmlns=”http://code.google.com/p/kippo/” type=”clientversion”>
<version session=”136371692cdb4d91b3eec6ff04618232” version=”SSH
−2.0−OpenSSH 5.3”/>

</kippo>
</body>
</message>

22

Message informing about failed client’s authentication attempt

<message from=”kippo−events−loginfailed@conference.localhost/kippo−
XDJQcVxo” type=”groupchat” to=”kkoltys@localhost/localhost”>

<body>
<kippo xmlns=”http://code.google.com/p/kippo/” type=”loginfailed”>
<credentials session=”136371692cdb4d91b3eec6ff04618232” password

=”123” username=”root”/>
</kippo>
</body>
</message>

Message informing about successful client’s authentication attempt

<message from=”kippo−events−loginsucceded@conference.localhost/kippo
−XDJQcVxo” type=”groupchat” to=”kkoltys@localhost/localhost”>

<body>
<kippo xmlns=”http://code.google.com/p/kippo/” type=”loginsucceeded

”>
<credentials session=”136371692cdb4d91b3eec6ff04618232” password

=”123456” username=”root”/>
</kippo>
</body>
</message>

Message informing about executing shell command

<message from=”kippo−events−command@conference.localhost/kippo−
XDJQcVxo” type=”groupchat” to=”kkoltys@localhost/localhost”>

<body>
<kippo xmlns=”http://code.google.com/p/kippo/” type=”command”>
<command session=”136371692cdb4d91b3eec6ff04618232” command=”

known”>pwd</command>
</kippo>
</body>
</message>

23

Figure 1: The diagram of Kippo’s database

24

	Introduction
	Installation
	Configuration
	Main configuration file
	Options for twistd
	File with emulated filesystem
	File contents
	Executable file messages
	Additional configuration data

	Start up and reconfiguration
	Output characteristics
	Output format
	Main log
	MySQL database
	XMPP server

